Stable variational approximations of boundary value problems for Willmore flow with Gaussian curvature

نویسندگان

  • John W. Barrett
  • Harald Garcke
  • Robert Nürnberg
چکیده

We study numerical approximations for geometric evolution equations arising as gradient flows for energy functionals that are quadratic in the principal curvatures of a two-dimensional surface. Beside the well-known Willmore and Helfrich flows we will also consider flows involving the Gaussian curvature of the surface. Boundary conditions for these flows are highly nonlinear, and we use a variational approach to derive weak formulations, which naturally can be discretized with the help of a mixed finite element method. Our approach uses a parametric finite element method, which can be shown to lead to good mesh properties. We prove stability estimates for a semidiscrete (discrete in space, continuous in time) version of the method and show existence and uniqueness results in the fully discrete case. Finally, several numerical results are presented involving convergence tests as well as the first computations with Gaussian curvature and/or free or semi-free boundary conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical scheme for axisymmetric solutions of curvature driven free boundary problems, with applications to the Willmore flow

We present a numerical scheme for axisymmetric solutions to curvature driven moving boundary problems governed by a local law of motion, e.g. the mean curvature flow, the surface diffusion flow, and the Willmore flow. We then present several numerical experiments for the Willmore flow. In particular, we provide numerical evidence that the Willmore flow can develop singularities in finite time.

متن کامل

A Phase Field Based Pde Constrained Optimization Approach to Time Discrete Willmore Flow

A novel phase field model for Willmore flow is proposed based on a nested variational time discretization. Thereby, the mean curvature in the Willmore functional is replaced by an approximate speed of mean curvature motion, which is computed via a fully implicit variational model for time discrete mean curvature motion. The time discretization of Willmore flow is then performed in a nested fash...

متن کامل

A Phase Field based PDE Constraint Optimization Approach to Time Discrete Willmore Flow

A novel phase field model for Willmore flow is proposed based on a nested variational time discretization. Thereby, the mean curvature in the Willmore functional is replaced by an approximate speed of mean curvature motion, which is computed via a fully implicit variational model for time discrete mean curvature motion. The time discretization of Willmore flow is then performed in a nested fash...

متن کامل

Bifurcation in a variational problem on a surface with a constraint

We describe a variational problem on a surface under a constraintof geometrical character. Necessary and sufficient conditions for the existence ofbifurcation points are provided. In local coordinates the problem corresponds toa quasilinear elliptic boundary value problem. The problem can be consideredas a physical model for several applications referring to continuum medium andmembranes.

متن کامل

A Nested Minimization Approach of Willmore Type Functionals Based on Phase Fields

A novel phase field model for Willmore flow is proposed based on a nested variational time discretization. Thereby, the mean curvature in the Willmore functional is replaced by an approximate speed of mean curvature motion, which is computed via a fully implicit variational model for time discrete mean curvature motion. The time discretization of Willmore flow is then performed in a nested fash...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016